If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+4n=1020
We move all terms to the left:
6n^2+4n-(1020)=0
a = 6; b = 4; c = -1020;
Δ = b2-4ac
Δ = 42-4·6·(-1020)
Δ = 24496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24496}=\sqrt{16*1531}=\sqrt{16}*\sqrt{1531}=4\sqrt{1531}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{1531}}{2*6}=\frac{-4-4\sqrt{1531}}{12} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{1531}}{2*6}=\frac{-4+4\sqrt{1531}}{12} $
| f-10=-1 | | 5d-14=21 | | 2(x-3)-7=7-5(x+1) | | x/2+2x/3-5=x | | 2x-13/3=-1 | | 8x/3-1=-17 | | -u/4+8=5 | | 49=3分之x+22 | | u+58/8=6 | | 20+X=6+2x | | 3x+10+2x=80 | | m+43/3=8 | | u/6+16=21 | | 7p=-70 | | x+41=4 | | 20/50=36/x | | (7+x)^2=225 | | 15x-(13-10)=x=14 | | 4×x+23=45 | | 4x+23-×=45 | | -1/3+1/2=-2/5x+1/4 | | -6x-2=x+12 | | X+(2+3x)=102 | | 3x-3=5x7 | | 3p+11.5=13 | | x+1.62x=27.3 | | ||||x|-1|-1|-1|=1 | | x+(645.16-0.612x)+(300-0.255x)=1000 | | (X)+(3x-8)=180 | | 3x+9=31,x= | | 9=8-8x | | 366000÷3666=x |